WorldFlux¶
Unified Interface for World Models in Reinforcement Learning
One API. Multiple Architectures. Infinite Imagination.
WorldFlux provides a unified Python interface for world models used in reinforcement learning.
Features¶
- Unified API: Common interface across model families
- Simple Usage: One-liner model creation with
create_world_model() - Training Infrastructure: Training loop with callbacks, checkpointing, and logging
- Type Safe: Full type annotations and mypy compatibility
Quick Start¶
Official CPU-success docs: CPU Success Path
API Glimpse¶
from worldflux import create_world_model
import torch
model = create_world_model(
"dreamerv3:size12m",
obs_shape=(3, 64, 64),
action_dim=4,
)
obs = torch.randn(1, 3, 64, 64)
state = model.encode(obs)
actions = torch.randn(15, 1, 4)
trajectory = model.rollout(state, actions)
print(trajectory.rewards.shape)
Available Models¶
| Family | Presets |
|---|---|
| DreamerV3 | size12m, size25m, size50m, size100m, size200m |
| TD-MPC2 | 5m, 19m, 48m, 317m |
| JEPA | base |
| Token | base |
| Diffusion | base |
Documentation¶
- **Getting Started** --- Minimal onboarding for installation and first execution. [:octicons-arrow-right-24: Installation](getting-started/installation.md) [:octicons-arrow-right-24: Quick Start](getting-started/quickstart.md) [:octicons-arrow-right-24: CPU Success Path](getting-started/cpu-success.md) - **API Reference** --- Implementation-aligned API contracts and autogenerated symbols. [:octicons-arrow-right-24: Factory Functions](api/factory.md) [:octicons-arrow-right-24: WorldModel Base Class](api/protocol.md) [:octicons-arrow-right-24: Training](api/training.md) - **Reference** --- Operational documentation and project quality checks. [:octicons-arrow-right-24: Benchmarks](reference/benchmarks.md) [:octicons-arrow-right-24: Unified Comparison](reference/unified-comparison.md) [:octicons-arrow-right-24: Parity Harness](reference/parity.md) [:octicons-arrow-right-24: Documentation Stack](reference/docs-stack.md) [:octicons-arrow-right-24: Release Checklist](reference/release-checklist.md) [:octicons-arrow-right-24: Publishing](reference/publishing.md) [:octicons-arrow-right-24: Tutorial Placeholder Policy](reference/tutorial-policy.md) [:octicons-arrow-right-24: Troubleshooting](reference/troubleshooting.md) [:octicons-arrow-right-24: WASR Metrics](reference/wasr.md)
Architecture¶
graph LR
subgraph Input
A[Observation]
end
subgraph WorldModel["World Model"]
B[Encoder]
C[State]
D[Dynamics]
E[Decoder]
end
subgraph Output
F[Predictions]
end
A --> B
B --> C
C --> D
D --> C
C --> E
E --> F
style C fill:#e1f5fe
style D fill:#fff3e0 Installation¶
Try It Now¶
The fastest way to get started is our interactive Colab notebook.
Contributing¶
Contributions are welcome. See our Contributing Guide.